Visually Driven Activation in Macaque Areas V2 and V3 without Input from the Primary Visual Cortex
نویسندگان
چکیده
Creating focal lesions in primary visual cortex (V1) provides an opportunity to study the role of extra-geniculo-striate pathways for activating extrastriate visual cortex. Previous studies have shown that more than 95% of neurons in macaque area V2 and V3 stop firing after reversibly cooling V1. However, no studies on long term recovery in areas V2, V3 following permanent V1 lesions have been reported in the macaque. Here we use macaque fMRI to study area V2, V3 activity patterns from 1 to 22 months after lesioning area V1. We find that visually driven BOLD responses persist inside the V1-lesion projection zones (LPZ) of areas V2 and V3, but are reduced in strength by approximately 70%, on average, compared to pre-lesion levels. Monitoring the LPZ activity over time starting one month following the V1 lesion did not reveal systematic changes in BOLD signal amplitude. Surprisingly, the retinotopic organization inside the LPZ of areas V2, V3 remained similar to that of the non-lesioned hemisphere, suggesting that LPZ activation in V2, V3 is not the result of input arising from nearby (non-lesioned) V1 cortex. Electrophysiology recordings of multi-unit activity corroborated the BOLD observations: visually driven multi-unit responses could be elicited inside the V2 LPZ, even when the visual stimulus was entirely contained within the scotoma induced by the V1 lesion. Restricting the stimulus to the intact visual hemi-field produced no significant BOLD modulation inside the V2, V3 LPZs. We conclude that the observed activity patterns are largely mediated by parallel, V1-bypassing, subcortical pathways that can activate areas V2 and V3 in the absence of V1 input. Such pathways may contribute to the behavioral phenomenon of blindsight.
منابع مشابه
Cortical connections of areas V3 and VP of macaque monkey extrastriate visual cortex.
The cortical connections of visual area 3 (V3) and the ventral posterior area (VP) in the macaque monkey were studied by using combinations of retrograde and anterograde tracers. Tracer injections were made into V3 or VP following electrophysiological recording in and near the target area. The pattern of ipsilateral cortical connections was analyzed in relation to the pattern of interhemispheri...
متن کاملThe organization of orientation-selective, luminance-change and binocular- preference domains in the second (V2) and third (V3) visual areas of New World owl monkeys as revealed by intrinsic signal optical imaging.
Optical imaging was used to map patterns of visually evoked activation in the second (V2) and third (V3) visual areas of owl monkeys. Modular patterns of activation were produced in response to stimulation with oriented gratings, binocular versus monocular stimulation, and stimuli containing wide-field luminance changes. In V2, luminance-change domains tended to lie between domains selective fo...
متن کاملVisual cortex organization in primates: theories of V3 and adjoining visual areas.
After years of experimentation and substantial progress, there is still only limited agreement on how visual cortex in primates is organized, and what features of this organization are variable or stable across lines of primate phylogeny. Only three visual areas, V1, V2, and MT, are widely recognized as common to all primates, although there are certainly more. Here we consider various concepts...
متن کاملMapping striate and extrastriate visual areas in human cerebral cortex.
Functional magnetic resonance imaging (fMRI) was used to identify and map the representation of the visual field in seven areas of human cerebral cortex and to identify at least two additional visually responsive regions. The cortical locations of neurons responding to stimulation along the vertical or horizontal visual field meridia were charted on three-dimensional models of the cortex and on...
متن کاملFunctional analysis of V3A and related areas in human visual cortex.
Using functional magnetic resonance imaging (fMRI) and cortical unfolding techniques, we analyzed the retinotopy, motion sensitivity, and functional organization of human area V3A. These data were compared with data from additional human cortical visual areas, including V1, V2, V3/VP, V4v, and MT (V5). Human V3A has a retinotopy that is similar to that reported previously in macaque: (1) it has...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PLoS ONE
دوره 4 شماره
صفحات -
تاریخ انتشار 2009